New Inequalities for Entire Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New integral inequalities for $s$-preinvex functions

In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.

متن کامل

Inequalities for Entire Functions of Exponential Type

This paper is concerned with a class of linear operators acting in the space of the trigonometric polynomials and preserving the inequalities of the form \S(8)\ < \T(8)\ in the half plane Im 8 > 0. Some inequalities for entire functions of exponential type and some theorems concerning the distribution of the zeros of the trigonometric polynomials, including an analogue to the Gauss-Lucas theore...

متن کامل

New inequalities for a class of differentiable functions

In this paper, we use the Riemann-Liouville fractionalintegrals to establish some new integral inequalities related toChebyshev's functional in the case of two differentiable functions.

متن کامل

Inequalities for products of zeros of polynomials and entire functions

Estimates for products of the zeros of polynomials and entire functions are derived. By these estimates, new upper bounds for the counting function are suggested. In appropriate situations we improve the Jensen inequality for the counting functions and the Mignotte inequality for products of the zeros of polynomials. Mathematics subject classification (2010): 26C10, 30C15, 30D20.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 1958

ISSN: 0022-2518

DOI: 10.1512/iumj.1958.7.57016